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It is shown that the seeming contradiction between deep inelastic electron scattering 
and e+e - annihilation can be resolved by taking proper account of anomalous singulari- 
ties in the annihilation structure functions, corresponding to resonance mediated final 
states. 

1. Introduction 

The recent SPEAR data of hadron production in e÷e - collisions [1 ] contra- 
dicted most ideas of photon-induced hadron production existing up to one year 
ago. Based on elementary quark-parton model ideas or naive analytical cont inuat ion 
of the deep inelastic electron scattering data, the inclusive annihilation cross section 
was expected to scale and the total cross section to behave "point l ike" (i.e., to be 
proportional to 1/q2). The SPEAR data, on the other hand, show that at present 
energies (q2 < 25 GeV 2) scaling is badly violated at large x,  i.e., at low momenta  
(x = 1/w = - q 2 / 2 m v )  and seems only to be valid in the small x region (x < 2). This 
results in a more or less constant total cross section** over the whole SPEAR 
energy range instead of an expected I /q 2 dependence. 

Adding to all this confusion, two narrow resonances coupling to the e÷e - channel 
have been found very recently [2] at a mass of 3.1 and 3.7 GeV, respectively. It is 
tempting to connect the physics of these resonances to the near constancy of the 
total cross section. But so far, we cannot see any answer to the question why scaling 
is badly violated at large x whereas it seems to be valid for large momenta.  On the 

* Address after May 1 : CERN, Geneva. 
** The latest edition of the SPEAR data though has discovered some oscillations superimposed 

on it. 
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contrary,  suppose there is a threshold at 4.2 GeV associated with any new hadronic 

degree of  freedom, then we would expect that scaling be violated in the small x re- 
gion which apparently is not the case. 

All our expectations towards hadron product ion in e+e - collisions were based on 

the assumption that the ideas borne out of  the deep inelastic electron (and neutrino) 
scattering experiments can literally be taken over to the timelike region. The SPEAR 
results now reveal that the spacelike and timelike regions are unlikely to be connected 
in a simple manner,  a fact which has long been advocated by several authors [3 -6 ] .  

From an S- matrix point  of  view it seems indeed more natural that the deep ine- 
lastic scattering and annihilation structure functions are not  connected via analytical 
continuation.  A simple relationship is only accomplished for a very restricted set of  
Feynman diagrams [7]. Generally, the annihilation structure function receives con- 
tributions from anomalous singularities [3, 4] which move onto the physical sheet 
as the external masses are increased [8]. 

Before one now at tr ibutes the violation of  scaling to some new phenomenon,  and 
in order to see how far the e+e - cross section reflects the new physics behind the 
narrow resonances, one should (re-)examine what current scaling models really pre- 
dict in the annihilation region taking account of  the full analytical structure. This 
may reveal that the SPEAR results do not contradict  asymptot ic  scaling and perhaps 
will clarify what the origin of  the behaviour of  the total  cross section is. 

Such an analysis requires, of  course, a definite model.  It is the aim of  this paper 
to investigate how far the total and inclusive e+e - cross section can be understood 
from the recently proposed dual light cone model  [9, 10]. 

The paper is organized as follows. In sect. 2, we give a brief  review of  the dual 
light cone model.  In sect. 3 we discuss the analytical cont inuat ion into the timelike 
region in detail.  Particular interest is devoted to anomalous singularities contr ibuting 
to the annihilation structure functions. In sect. 4 (and sect. 3), it is argued that the 
anomalous singularity contr ibut ions can be saturated in a fairly neat way without  
introducing any new parameter.  Quantitatively, it turns out  that  these contr ibut ions 
can indeed resolve most of  the seeming contradict ion between lepton induced hadron 
product ion at space and timelike q2. Finally, in sect. 5 we add some concluding 
remarks. 

2. The dual light cone model  

The recently proposed dual light cone model  [9] will be the main building block 
of  our program sketched so far. Before we go into any details let us first briefly re- 
capitulate the basic features o f  this model*. 

In the deep inelastic scattering region the Compton ampli tude could be written 

* See also ref. 111 ]. 
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1 l - a  

A (s,, = 0;q2, q'2) = _ f d~ f an 
0 -(1 -a) 

F(ee, 3) 
[½(q2 + q ' 2 ) (  1 _ ee) + ½(q2 _ q'2){ 3 + see]' 

( 2 . 1 )  

where 

F(ee'~)=N°e-e'(O)+l((l-°O2-~2)Cl((l+a)2-32) - c 1 + c ' 1 + c 4 0 ) - 2 4  4 
(2.2) 

which led to the deep inelastic structure function 

l - x  
F2(x) = f dI3F(x, f3)=Nx-a(O)+I( 1 -x)2Cl÷  1 

- ( l -x )  
+ 1  × f d~' ((1 + x)2 - (1 - x)2~'2 ] - c l+q  +~0)-2 

4 I . ( 2 . 3 )  
- I  

The transverse structure function F 1 (x) was given by means of the Callan-Gross 
relation 

1 
FI(X ) = ~ F2(x) ,  (2.4) 

(m being the target mass) which we expect to hold, irrespective of the spin of the 
underlying constituents. The normalization of the light cone spectral function (i.e., 
N) was provided by the Adler sum rule [ee(0) < 1 ] 

1 

7 F2(x)=  1 , (2.5) 
0 

which, being a consequence of the current algebra constraints, actually led to scaling. 
Originally, eqs. (2.1)-(2.5) were derived for spin-zero targets. The generalization 

to higher-spin particles is not obvious*. In this paper we shall assume the spin-aver- 
aged structure functions to be the same as for spin-zero particles which, for the 
lowest-lying states, is supported by SU(6), SU(3) X SU(3), etc. 

The deep inelastic structure functions are completely determined if the Parameters 
Cl and c~ (corresponding to constant trajectories in the exotic quark hadron chan- 
nels) are known. The parameter c 1 is related to the large q2 behaviour of  the spin- 
averaged (if any) target form factor, i.e., 

F(q2 ) ~ 1 
(q2)Cl+l, (2.6) 

* For a different choice abstracted from a dual eight-point function see [29]. 
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in accordance with the Drell-Yan threshold relation [i 2] [cf. eq. (2.3)]. The param- 
t 

eter c I is determined by the asymptotic behaviour of  the (2 ÷) ~ ( 1 - )  transition 
form factors (e.g., A 2 ~ PT), i.e., 

Ftrans(q2) ~ 1 , (2.7) 
(q2)C'1 +1 

which results from going to the vector meson pole in the q'2 channel and to the 
tensor meson pole in the t channel. For pions we take c 1 = 0 corresponding to a 
(commonly believed) monopole form factor [13]. The "scaling law" describing the 
asymptotic behaviour of  the higher-spin form factors [14, 15] then predicts c] = 2 
(independent of  the target) which we will assume here. For nucleons we take c 1 = 1 
corresponding to a dipole form factor [16]. Later on we are also interested in 
higher-spin structure functions which then may only differ in the threshold beha- 
viour (i;e., Cl). 

The dual light cone model includes normal threshold singularities only. Hence, 
we are not surprised that the deep inelastic annihilation structure functions are (for 
integer Cl, i.e., multipole behaviour of  the target form factor which will be of  in- 
terest only here) given by analytic continuation of  the scattering structure functions 
(2.3) and (2.4). The somewhat confined analytic structure of  the dual light cone 
model (Mandelstam analyticity) manifests itself also in the Gribov-Lipatov recipro- 
city relation [ 17] (holding quite generally for arbitrary c 1) 

F'2(x)=x3 F2 (-~), 

Fl(x)= X Fl (1) ,  (2.8) 

which relates F1,  F 2 and F1, F 2 in their physical regions. Eq. (2.8) can easily be 
derived from eqs. (2.3) and (2.4). 

The structure functions F1,  F 2 correspond to "charged" photon scattering. In 
order to obtain the physical structure functions, we have to perform an isospin ro- 
tation. Assuming SU(3),  non-exoticity in all channels and the photon being a U 
spin scalar, we obtain 

F~r±,rt0,K±c~ ", - -~r'K0,~,0r~'~ - s--~'rl0t'v'~ s '08 
2 i..,,.) - 22' 2 ~.~) - -  4~t" 2 ~ ,  = "~F 2 (x) = ~Yz(x ) (2.9) 

and similarly for any other meson nonet.  In the case of  the baryon octet,  one has 
to allow for a 10(i--if) representation in the baryonic channels, and there is an in- 
finite set of  solutions to the requirements of SU(3) and non-exoticity. One (extreme) 
solution would be assuming that the decuplet does not  contribute in the scaling re- 
gion which would give the analogue of  eq. (2.9). There is no doubt  that  the decuplet 
contributes to the scaling structure functions [18]. However, in the threshold region 
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(i.e.,x ~ 1) this seems to be a good approximation. The A(1236) -+ N transition form 
factor shows a faster decrease [19] than the nucleon form factor, which suggests a 
suppression of  the decuplet contribution near x = 1 v& the Drell-Yan relation. This 
solution predicts 

~ ( x )  _ 2 

FP(x) x~ l  5 '  
(2.10) 

being also supported by recent SLAC data [19]. Another (extreme) solution would 
be the SU(6)/quark model result 

FP'X+(x) = 2 a F~ 'x0 ' -0 'A = 3F~ z - ' ~ -  (x) = F 2 ( x ) ,  (2.11) 

which treats nucleon and A on the same footing. For small x,  i.e., in the Regge 
region we consider this solution the most realistic one as it restores the characteristic 
features of  the data here most adequately*. Later on we shall also be interested in 
the decuplet structure functions. Taking the SU(6)/quark model solution, they are 
given by 

2 p A -  ,--*-,y* - , I 2 -  3F~++(x) = F ~  +'Y *+ (x) = 3F~0"-* 0,y.0 (x) = ~_  2 (x) = F2(x ) . 

(2.12) 

So far we have left out the pomeron contribution to the structure functions. This 
contribution cannot be integrated in the current algebra duality scheme, but has to 
be added by hand. Since our ansatz for the light cone spectral function can also 
be understood to provide a simple parametrization for the structure functions having 
Regge asymptotics and a definite threshold behaviour and satisfying the Gribov- 
Lipatov reciprocity relation (2.8), it is tempting to assume the same ansatz also for 
the diffractive part. In the context of  our model this can also be motivated by as- 
suming some s-channel background trajectory without resonances (remember, our 
model has non-linear trajectories) being dual to the pomeron in accordance with 
the Harari-Freund hypothesis. Now, the threshold behaviour (i.e., Cl) is, however, 
no longer determined by the asymptotic behaviour o f  any form factor. But, fol- 
lowing the general belief that the background corresponds to (at least) two quark- 
antiquark pairs and three quarks, plus a quark-antiquark pair in the case of  the 
pion and nucleon, respectively, we are tempted to set c 1 = 2 for pions and c I = 3 
for nucleons according to the dimensional counting laws [22]. Hence, we expect the 

* This will become evident by comparing the predictions of this model [fig. 1 and eq. (2.11)] 
to the neutron data [20, 21]. 
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Fig. 1. The proton scaling function. 
Fig. 2. The pion scaling function. 

pomeron contribution to be strongly suppressed near threshold as compared to the 
non-diffractive part. 

Let us now test our model at the deep inelastic scattering data. The intercept of  
the Regge trajectory [cf. eq. (2.3)] will be chosen ot(0) = 0.3 corresponding to a 
trajectory rising linearly up to the A 2 (or 0 resonance with ot'(O) = 1 GeV -2 .  Then 
the pomeron coupling remains the only free parameter. We assume the pomeron 
being a SU(3) singlet. Choosing the SU(6) /quark  model solution (for the nucleon 
octet), we obtain a good fit to the proton data for Npomero n = 2 as shown in fig. 1. 
Also indicated is the non-diffractive part of  the proton structure function (which 
contains no free parameter). This, by itself, is also in good agreement with recent 
neutrino experiments [23] which we consider, giving strong support to our ideas. 
The pomeron contribution is significant at small x only as we expected being con- 
sistent with the data. 

In the meson case the pomeron coupling is now determined via factorization by 
the (experimental) ratio a ' rp/e pp ~ ~ (note that the x --* 0 limit of  the scaling struc- -tot" tot 
ture functions does not depend on c 1) or, giving the same result, assuming additivi- 
ty of  the quark pomeron couplings. The resulting structure function is shown in 
fig. 2. Due to the different threshold factor, F~(x) increases much faster near thres- 
hold than the proton structure function. The pomeron contribution again is negli- 
gible for large x. 

The scaling structure functions are meaningless as they stand if scaling is reached 
asymptotically only. To the next leading order the Compton amplitude A is given 
by [neglecting curvature of  the Regge trajectories; cf. ref. [9], following eq. (4.10)] 

1 1 - ~  

A ( s , t = O ; q 2 , q ' 2 ) = - f  dot f d[J 
0 - ( l - a )  

X F(ot, f3) 

~(q2 + q '2) ( l_ot  ) + { (q2_  q'2)~ + SOt + 
½+ c 1 -  ot(0) ~ + ol(0) (2.13) 

ot'(o) ot ÷ 
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which results in the structure function 

where 

1--x' --I 
F2(x, q2)= f d/3 F(x',/3) [1 x (½+c 1 o~(0)) 1 

-(1 -x') °t'(O)q2 

= F2(x' ) [ 1 -  a,(0)q2 (1 +c I --~(01 -1 (2.14) 

1 + , 1 (½ + o~(0))  
(O)q2 

x' = x (2.15) 
1 x (½ + C 1 - ol(O)) o,'(O)q2 

Here, c~(0) means the intercept of the trajectory in the photon channel. The variable 
x' has long been advocated by Bloom and Gilman [18] and by Rittenberg and Rubin- 
stein [24,25]. 

3. Continuation to the timelike region 

Once again, we emphasize that the dual light cone model has only normal thres- 
hold singularities which led to the simple reciprocity relation (2.8) connecting the 
timelike and spacelike region. In general, the continuation to timelike q2 reads 

discs ~A (s, 0; q2 + ie, q2 _ ie) = - R e  discs~ATr (s, 0; q2 + ie, q2 + ie)+ G(s, q2),  

(3.1) 

where G(s,q 2) is the triple discontinuity* [26] (in s,q 2, q'2). So far G(s, q2), as given 
by the dual light cone model, was zero for the cases we were interested in. We had 
[9] 

G(x) = 2N sin2rrc I x-~(0)+l(x - 1) 2c1+1 

X f+l d/3' ( ~ - ~ )  cl ( ( } + x ) 2 - ( 1 - x ) 2 ~ ' 2 )  - c 1 + c ' 1 + ° ~ ( 0 ) - 2 4  , (3.2) 

which vanishes for integer c 1 . 
The Gribov-Lipatov relation is now valid for any Cl, i.e., G 4= 0 even. Hence, the 

triple discontinuity contribution arising from normal threshold singularities [26] 
[eq. (3.2)] is properly considered by simply employing the reciprocity relation 
(2.8) in continuing to the timelike region. 

* Strictly speaking, in the definition ofeq. (3.1) this is only true for nucleons. 
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The triple discontinuity G also receives, however, contributions from anomalous 
singularities [3] moving onto the physical sheet as the external masses are increased 
[8]. Typical examples are graphs with unstable external (the photon)  and internal 
particles as have extensively been discussed by Gatto, Menotti and Vendramin [4]. 
These contributions are expected to violate the Gribov-Lipatov relation and will 
have to be treated separately. The derivation of  the reciprocity relation given by 
one of  us [27], being based on S matrix theory, substantially relied upon the assump- 
tion of a Mandelstam representation for the Compton amplitude for spacelike and 
timelike q2. If  anomalous singularities now become important in the timelike region 
the Mandelstam representation will necessarily break down here. It will, however, 
continue to hold for spacelike q2. 

The generalized box graph as shown in fig. 3 is the first graph to acquire anoma- 
lous singularities as the external masses are increased [8] and also survives in the 
scaling limit. Here the horizontal lines may be any resonance having a non-vanishing 
deep inelastic structure function. Any other line inserted into this graph delays the 
onset of  these anomalous singularities. Hence, the generalized box graph enclosing 
the well-established (boson and fermion) resonances seems to be a fairly well approxi- 
mation of  the anomalous singularity contributions. 

The triple discontinuity G, i.e., the "bare" anomalous singularity contribution 
of  the box graph (fig. 3) corresponds to the resonance mediated final state as shown 
in fig. 4, where the resonance is on its mass shell [4]. It is obvious that adding these 
contributions to the analytically continued normal threshold part does not  cause 
any kind of  double counting. The normal threshold part of  the box graph, however, 
is generally being taken care of  by Re disc s A(s ,  0; q2 + iE, q2 + ie) or, in particular, 
by the Gribov-Lipatov relation. We will come back to this question at the end of  
this section. 

Let us now concentrate on the "bare" anomalous singularity contributions to 
the deep inelastic (annihilation) structure functions. For the moment  we shall con- 
sider a single resonance only (cf. fig. 4) and assume that all spin states (of the re- 
sonances, if any) are produced with equal strength. We also assume that the deep in- 

× 

mR ~ m  

Fig. 3. Generalized box diagram giving rise to anomalous singularities for m 2 > Eft 2 + m 2. 

Fig. 4. The bare anomalous singularity contribution of the box diagram. The resonance R is on 
its mass shell. 
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elastic resonance structure function describing the lower vertex in fig. 4 contains no 
(further) anomalous singularities. The case of  double box graphs (with three rungs) 
going beyond this assumption will be discussed later on. 

Since we are dealing with two structure functions we now write 

/~1 (x) = Re Fl(X ) + Gl(s  , q 2 ) ,  

ff2(x) = - R e  F2(x ) + G2(s, q 2 ) .  (3.3) 

In the zero-width limit we then have 

/32 mR rd3pR fd3p 
2mG1 - v~- G2 sin20 : np~ni (2JR + 1 ) J  2--P~0 R a 2~ 0 

_ /32 - 
X 6(4'(pR - fi -P)(2mR FR (XR)--  ~ R F R ( x R ) s i n 2 O R )  , (3.4) 

where m(mR)  is the mass of  the detected hadron (resonance), 0(0R) its angle rela- 

tive to the beam axis,/32 = 1 - 4m2x2 /q2 ,x  R = ~q2/2p0R and/32 = 1 - 4m2RX2R/q 2. 

Furthermore p~t m = x/(rn2R -- ( ~  + m) 2) (m 2 -- ( ~  -- m)2) /ZmR where m is the mass 
of the secondary decay product  of  the resonance R. The resonance structure func- 
tions are understood spin averaged (spin JR)  which gives rise to the multiplicity fac- 
tor 2 J  R + 1. In the case where secondary and detected particle are equal, the right- 
hand side of eq. (3.4) has to be multiplied by an additional factor of  tWO. 

The phase space integral in eq. (3.4) can be written in terms of  an integral over 
x R and cos O R giving 

/32 
2mG 1 - - ~  G 2 sin20 = 

where 

2m R 
(2J R + 1) ~rp~m 

~R (2mR /32 × f d~R dc°S0R ; 3 . / - ~  P~(XR)---~RP~(XR)sin2OR)' 
o ,6xRv-~- (3.s) D< 

~ ~--~-- (8 COS 0 C o s 0 (  X-~--~tXtm2R + ~/2))1 2 D = L4XXR, ,. - flRCOS OR) + 7 -  m 2 m 2 - 

+ sin~0 r~( "~ (m~ + m 2 - ~) 
q2 L4\~ zx R 

I 
(3.6) 
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The integral over cos O R can now be carried out analytically. Substituting x R = x/r/ 
this finally gives 

min (x,r/2 ) 
mR i f  - 

2mG 1 - (2J R + 1) dr/(2m R F R (x/r/) 
2p~m /3 r/1 

I32R ( 4x 2 , 2 ) )21~  -- -- 3 2 1 + (m2r/ -- ~(m R + m 2 - fit 2) P~(x/rl)) , (3.7) 
32q2r/ 

min(x, r72) 
32 - mR (2J R + I )  I 
-~  G2 2p~m ~ f 

where 

r/l,2 = 

32q2r/ r/1 

))2 8X 4 ( 1 ~  _ ( m 2  + m2 ) 
_ ~2) + _ _/32q2r/2 (m2r/2 m 2 _ ~2)r/+ 

+ ~2(m2m2 1 2 m 2 ~2)2)) 1 r / ~ R  - - 4 ( m R  + - ~ 2 ( x / r / ) ,  

dr/I32 (1 + 4x2 (m2r/ 1 2 - ~ ( m  R +m 2 

m2 + m 2 - m 2 - T -  ((m2R + m 2 - m 2 )  2 m2R 

2m 2 2m 2 m 2 

+ 4x2 (m2m 2 x 2 '~1/2 _ 4 ( m R  + m 2 _ ~ 2 ) 2 ) ]  . 
m2q2 

(3.8) 

(3.9) 

Asymptotically, i.e., as q2 ~ +oo eqs. (3.7) and (3.8) reduce to 

m R min(x,rl 2) 
2raG 1 - (2J R + 1) f dr/2m R f i r  1 (x/r/), (3.10) 

2PR m rl*{ 

rnin(x,n~) 
1 = m_.__~R 

~ G  2 (2J R + 1) f d r / ~  Fr~(xlr/) ,  (3.11) 
2p~ m o o  

nl 
respectively. 

The anomalous singularity contributions scale non-trivially as we expected. The 
approach to scaling is, however, substantially retarded especially at large x as com- 
pared to the normal threshold contribution. If the (normal threshold) resonance 
scaling functions fullfil the Callan-Gross relation this is asymptotically also retained 
in the anomalous singularity contributions [cf. eqs. (3.10) and (3.11)]. For finite 
q2 the Callan- Gross relation gets, however, strongly modified. 

Since our model incorporates Mandelstam analyticity, the normal threshold part 
of the box diagram (fig. 3) is already included in the structure functions (2.3), (2.4) 
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and (2.8) so that the complete annihilation structure functions are given by eq. 
(2.8) plus the anomalous singularity contributions [eqs. (3.7) and (3.8)]. 

439 

4. Predictions for timelike q2 

In the last section we have strongly exposed the anomalous singularity contribu- 
tions to the e+e - annihilation structure functions. Before we go into any detailed 
numerical discussion, let us now ask how large we expect the anomalous singularity 
contributions to be, compared to the analytically continued normal threshold part. 
In figs. 5 and 6 we have drawn the (normal threshold) antiproton and pion annihila- 
tion structure functions F~-(x) and P~(x) ,  respectively, as given by the reciprocity 
relation (2.8), compared to the SPEAR data [28]. We find that the normal thres- 
hold (anti-)proton structure function roughly accounts for the data. Note also that 
the experimental antiproton distribution seems to depend far less on q2 than in the 
case of  the pion (cf. fig. 6). This means (in our language) that, at present energies, 
the anomalous singularity contributions to the (anti-)proton structure functions 
should not be sizeable. In the case of  the pion distribution, we are, however, con- 
fronted with a rather different situation. Here (cf. fig. 6), the analytically continued 
normal threshold part is substantially below the experiment and does in no way 
follow the trend of  the data, i.e., the seeming violation of  scaling at large x (small ~) .  
The discrepancy is most striking in the large x region and decreases as x is d~creasing. 
This leads us to conclude that in the case of  the pion distribution, the anomalous 
• singularity contributions have to account for most o f  the data and for the violation 
of  scaling, exhibi t ing a second, x -dependen t  scale. 

Can the anomalous singularity contributions as discussed in sect. 3 now describe 
these features of  the deep inelastic annihilation data? The answer is yes, as we shall 
see later on in this section. 

The magnitude of  the anomalous singularity contributions (cf. sect. 3) depends 
on the masses of  the resonance and its decay products and on the nature of  the 
structure functions ffR,2(x). Moreover, it depends on the multiplicity of  the inclu- 

sive (say) pion in the final state of the resonance R including the spin factor 2J  R + 1. 
As far as the x-dependence is concerned, we expect the anomalous singularity 

contributions at present q2 (q2 ~ 25 GeV 2) to be zero for x ~ 1.2 - 1.6, depending 
on the kinematical configuration, due to the fact that the lower limit of  the integral 
in eqs. (3.7) and (3.8) exceeds its upper limit in this region. At large x ,  however, 
both the anomalous singularity and normal threshold contributions have the same 
power behaviour (remember,  c~ = 2 holds irrespective of  the nature of  the target/in- 
clusive particle). Hence, the anomalous singularity contributions are expected to 
lead to an enhancement of  the analytically continued inclusive distribution at large 
x (provided both are at least of  the same order of  magnitude) whereas at small x 
they die away rapidly. This is exactly how the extra contributions missed out in the 
analytic continuation should look like (cf. fig. 5). 
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Fig. 6. The pion distribution as given by the Gribov-Lipatov reciprocity relation in our model  
(i.e., the normal threshold part) compared to the SPEAR data. 

For small and medium x the r/integration [cf. eqs. (3.7) and (3.8)] extends over 
the threshold region of ffR;2(xfil), so that the magnitude of the anomalous singularity 
contributions strongly depends on the actual threshold behaviour of l,---FR2(x) in this 
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domain. From general arguments given later on in this section, we conclude that the 
low-lying meson (baryon) resonances such as, e.g., the p (,5 (1236)) should give rise 
to the same threshold behaviour as the pion (proton) structure function, i.e., 
F 1,2(x) ~ x - 1 (J~l,2(x) ~ (x - 1)3). Because of  the higher threshold factor inherent 
in the nucleon scaling functions, we then expect that the anomalous singularity con- 
tributions to the nucleon inclusive distribution (e.g., R = A ~ Nzr) are much smaller 
than those arising from the meson resonances (e.g., R = O ~ 21r) and contributing 
to the pion spectrum. For the same reason the contribution of  the baryon resonances 
to the pion inclusive distribution and any other contribution accompanied with a 
higher threshold factor should be relatively small too for small and medium x. 

This symptom of the anomalous singularity contributions can also be traced in 
the SPEAR data. At present energies, the (anti-)proton inclusive distribution is 
roughly described by the normal threshold part (cf. fig. 5; note that the nucleon in- 
clusive distribution is for q2 < 25 GeV 2 constrained to small and medium x,  i.e., 
x < 2.8), whereas the experimental pion inclusive cross section is substantially 
larger than the (predicted, though well founded) normal threshold contribution even 
at medium x (cf. fig. 6). 

For large x (and fixed q2) the small 7? region of  integration [cf. eqs. (3.7) and 
(3.8)] is sensitively cut-off  by the lower limit r~l. A t x  = 10 and q2 = 25 GeV 2 we 
find for various (representative) cases (the detected particle being underlined) 

R 771 

p -+ 2zr 3.75 

f -+ 2zr 8.25 

A 1 -+ _nO 4.51 

A 2 ~ zrp 6.3 8 

A -+ zrN 4.96 (4.1) 

Hence, even here the r/integration is confined to the threshold region of  FIR,2(x/r/), 
so that the same argument, which let us expect any resonance contribution accom- 
panied with a higher threshold factor being suppressed, also applies in this region. 
Moreover, as r/1 increases with m 2 [cf. table (4.1)], we conclude that higher mass 
resonances are as well strongly suppressed for any threshold behaviour (note that 
the large x region provides by far the dominant contribution to the cross section). 
For finite q2 this leaves us with a rather comprehensible situation of  saturating the 
anomalous singularity contributions by the well-established low-lying resonances. 

Asymptotically, the 7/integration is, however, no longer confined to the thres- 
hold region and the higher mass resonances are not suppressed anymore so that 
there is a priori no reason why anomalous singularity contributions involving 
higher threshold factors and/or higher mass resonances should not become significant 
here. 
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We notice that the anomalous singularity contr ibut ions involve a new scale being 
typically of the other 4m2RX2/(7) 2, where (7) can be defined by 

min(x, ~ )  min (x,~ 2 ) [L 
nl n 1 

For R = p ~ 2n and c 1 -- 0 [i.e., P~,2(x ) ~-x  - 1 a s x  ~ 1], which provides a sub- 
stantial contr ibut ion to the inclusive pion distribution as we shall see, we obtain 
(7) ~ 2 introducing a scale of about m2px 2 for this part icular contr ibut ion (this is 
not to be confused with 71 being given for finite q2).  Hence, for any q2 there will 
be a region of  large x (shrinking to zero as q2 is increasing) where scaling has not  
yet been reached. This means that we cannot expect  scaling at large x (its lower 
limit depending on q2) whereas we do expect  scaling for medium x and near thres- 
hold. For  R = A -~ N~ and the nucleon being detected we obtain a scale of  the same 
order o]" magnitude which certainly will show up in the nucleon distr ibution at 
large x.  This region will become accessible at very high q2,  where our threshold 
argument clearly does not  apply anymore.  

Asymptot ica l ly ,  the angular distribution of  the anomalous singularity contribu- 
tions is ~(1 + cos20) (cf. sect. 3). For finite q2 this behaviour is, however, strongly 
influenced by the pre-asymptotic  corrections occurring under the integral of  eqs. 

Table 1 
Resonances taken into account in the anomalous singularity contributions 

q~" state IG(J P) R Comments Ideal decay modes 

1+(1 - ) p (770) 2~ 
3S 1 -~ (1-)  K*(892) K~ 

(~(784) ideal mixing 31r 
0 - ( 1 - )  ~o(1020) KK 

1-(0 +) 8 (920) ~rn 
3P 0 ~ (0 +) r ( 1300) Kn 

r e (750) 2n 
0+(0 +) 1. S*(1060) ideal mixing KK 

1-(1 +) AI(I I00 ) ~p 
3P 1 -~ (t +) KA(1300) K~t 

~-D(1290) ~t~ 
0+(1 +) rE(1420) ideal mixing KK* + KK* 

1-(2 +) A2(1310) 7tO (75%), ~r~(25%) 
3P 2 ~ (2 +) KN( 1420) K~ (60%), KTrTt (40%) 

r f(1270) 2~r 
0+(2 +) L f'(1520) ideal mixing KK 

1+(1 +) B(1235) ~tto 
1P 1 ~ (1 +) KA(1300) K~t~t 

0-(1 +) ? 
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(3.7) and (3.8). Due to destructive interference between the leading and pre-asymp- 
totic expressions, G 2 gets sensibly suppressed, especially at small q2 and large x, 
which results in a more or less flattened angular distribution. 

We have argued that the anomalous singularity contributions are for present 
values of q2 well approximated by the low-lying resonances and those having the 
least suppressing threshold behaviour. In the context of our model, starting from 
non-linear trajectories, we now expect quite generally (i.e., for all q2) that the ano- 
malous singularity contributions can be saturated by a finite set of  resonances. In 
the following we shall restrict ourselves to the decuplet, i.e., R = {A, ---*,Y*,~2- } 
in the case of  the baryons and to the meson resonances as listed in table 1. We 
believe this to be a good approximation even at very large q 2  

It is clear that the resonance structure functions entering in the anomalous singu- 
larity contributions should contain no anomalous singularities anymore (as, e.g., 
the p structure function would contain anomalous singularities if, e.g., the A 1 ~ pTr 
intermediate states had not been included explicitly though it turned out to be im- 
portant) if these are saturated by the given resonances. It is also clear that adding 
the various resonance terms does not cause any double counting as long as the re- 
sonance structure functions do not contain anomalous singularities. The double box 
graph corresponding to, e.g., the A 1 ~ pn decay chain (fig. 7a) can, as far as the 
anomalous singularity content is concerned, be rewritten in the form drawn in 
fig. 7b, so that these contributions are also covered by our general formalism (cf. 
sect. 3). 

We now assume that the pomeron couples universally to all mesons and all baryons. 
Furthermore (for lack of  any other information) we assume that the resonance form 
factors obey the "scaling law" being established by several authors [14, 15]. This 
means that the spin-averaged form factors 

F(q2) = (pO + P'o)-l (h~x l(p?~lfo(O) p'X'),2) l/2 

have a universal asymptotic behaviour of  the form ~ ( q 2 ) - I  a n d  _~(q2)-2 for all 
meson and baryon resonances, respectively [cf. sect. 2 following eq. (2.7)]. Conse- 
quently, we set c 1 = 0 for meson targets and c I = I for baryons, which then corn- 

(a) (b) 

Fig. 7. Higher order anomalous singularity contributions. (a) and (b) give the same anomalous 
singularity contribution to the pion structure function. 
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p le te ly  de te rmines  our input .  The same results also fo l low f rom SU(6 )  at least for 

the lowest- lying resonances.  
In the last par t  o f  this sect ion we shall n o w  discuss the predic t ions  o f  our  mode l  

stated so far for the total  and inclusive e+e - annihi la t ion  cross sect ion.  
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The differential cross section for e+e - -+ h + X has the form 

q 2 d2°4' -7rc~2 [ 01 
dee d cos 0 2x t3h (2dh + 1) 2m h ffhl(x ) ~2h - ~  ffh (x) sin 2 , (4.3) 

where F h and f h  are the (complete) annihilation structure functions as discussed 
in sect. 2 and 60 = l /x  = 2Eh/V ~ .  Integrating out the angular dependence, this 
can be rewritten as 

d60 x Ch(2Jh + 1) m h ---~x p h ( x  " (4.4) 

As a first numerical illustration of  what we have aimed at in the beginning of  this 
section, we have calculated the inclusive cross section for various anomalous singu- 
larity contributions (fig. 8). We see that, in fact, the A contributes much less 
than the p though the A has a higher multiplicity. We also notice that the shape of  
the anomalous singularity contributions is much different from that of  the analyti- 
cally continued distribution (cf. figs. 6 and 8), whereas it qualitatively follows the 
course of  the data. 

Let us now turn to the quantitative predictions. In fig. 9 we have drawn the 
(anti-)proton inclusive cross section as predicted by our model (i.e., including the 
anomalous singularity contribution arising from the zX) together with the SPEAR 
data. The agreement is surprisingly good and may be considered as a first positive 
test of  our ideas. 

In case of  the pion and kaon inclusive cross section there are many more terms 
to compute (cf. table 1). The result for charged pions plus kaons is shown in fig. 10. 
Here, the SPEAR data are well reproduced up to ~ -~  0.2. [ ~ =  (6o 2 - [4m2/q2])l/2] 
whereas for ~, < 0.2, i.e., at the peak of  the cross section the experimental distri- 
bution is somewhat higher (about 25%). Note, however, that the actual SPEAR data 
are likely to be down by ~ 10% in this region, since it has been assumed that all par- 
ticles have pion mass in converting the measured inclusive cross section to do/dw.  

We find this result very instructive. It states that the bulk o f  the inclusive cross 
section is due to anomalous singularity contributions. Moreover, it reveals that the 
SPEAR data do not contradict asymptotic scaling, contrary to many augurs. The 
x-dependent scale inherent in the anomalous singularity contributions accounts 
fairly well for the approach to scaling and, in particular, gives a plausible explanation 
why scaling is good at small x (large 60) but badly violated (at present energies) at 
low momenta.  In fig. 10 we have also drawn our prediction for x / ~  -=  10 GeV. This 
shows that even the highest SPEAR energy (,V/~ = 5 GeV) is still far away from 
asymptopia. 

Fig. 1 1 shows the charged kaon inclusive cross section separately. At low momen- 
ta our calculations yield that kaons and pions are produced, independent of  q2(q2 
~< 100 GeV2), in the ratio KC/rr c ~ 0.1 I. For larger momenta this ratio increase sub- 
stantially. At x = 2 we obtain Kc/rr c ~ 0.25 while Kc/Tr c = 1 near threshold. This. 
feature is also consistent with the SPEAR data. 
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The angular distribution can be parametrized in the form 

5 d2 ° 1 + e 1 cos20 
d ~  dw dcos 0 

0 

1 d2 ° 1 + e  2 cos20. 
f d W d w d c o s O  
0.5 

For various q2 we obtain in our model 

x / ~  (GeV) e I e 2 

(4.5) 

3 0.08 0.2 

4 0.1 0.35 

5 0.15 0.45 

l0  0.3 0.85 (4.6) 

This means that the over-all angular distribution looks rather flat since the small w 
0arge x) region accounts for most of the cross section. As far as e 1 is concerned, 
our results agree nicely with the SPEAR data. In the scaling region (w ~> 0.5) the 
statistics are apparently too low to draw any conclusions. We expect e 2 to go 
much faster to one than e 1 which is not ruled out be experiment. 

The total cross section is given by the energy sum rule 

I I ; I I ' I i 8 
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, ,  +6 
n- • SLAC - L B L  

( S e p t .  197l. ed i t i on  ) 

I , I J I L 
2 4 6 8 10 

V - ~  ( G e V )  

Fig. 12. Predicted total cross section compared to the world's data. The dotted line corresponds 
to the asymptotical cross section as predicted by our model. 
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1 1 do h 
° (e+e-  ~ h a d r ° n s ) = 2 - ~ h  /mh /~q  2 dw W - -  (4.7) 

where the sum runs over all stable hadrons (i.e., the pion nonet and nucleon octet). 
The result of our calculation is shown in fig. 12 together with the world's data. The 
dotted line corresponds to the asymptotic value of  the total cross section assuming 
that the anomalous singularity contributions are saturated by the decuplet and the 
resonances listed in table 1. We see that the asymptotic cross-section is attained very 
slowly. For small q2 it joins nicely into the Frascati region, whereas at q2 = 25 
GeV 2 it stays ~ 20% below the SPEAR data. 

Asymptotically, the ratio PE = (charged energy)/(total energy) comes out to 
be* p~ = ~ if only mesons are produced (cf. sect. 3). Numerically, PE is reached al- 
ready at SPEAR energies. This is in good agreement with the SPEAR data which 
tend to the value PE "~ 0.5. If nucleons are also included, p~ gets slightly changed. 
Note, h-owever, that the nucleon contribution can be neglected at SPEAR energies. 
Hence, there is no energy crisis in this model. 

5. Conclusions 

We have seen that the gross features of  the SPEAR data can be understood by 
taking account of  anomalous singularity contributions in the annihilation structure 
functions. The new resonances and tile physics connected to it seem only to super- 
impose a fine structure on the total cross section. 

At present q2, the anomalous singularity contributions raise a fairly comprehen- 
sible situation. Here, only the low-lying resonances contribute which does not leave 
much freedom for numerical speculations. At very high q2, however, it is not  ruled 
out that higher resonances give a sensible contribution, meaning that the total cross 
section may well exceed R,~ (cf. fig. 12) as predicted by our model. 

Since the anomalous singularity contributions account for the bulk of  the pion 
inclusive cross section, we expect this for the most part to be resonance mediated 
(cf. fig. 4), which should also show up in the e+e - data. It is now up to the experi- 
mentalists to provide the necessary data (e.g., the resonance structure functions) so 
as to clear up the situation further. 

We wish to thank D. Amati for reading the manuscript. 
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